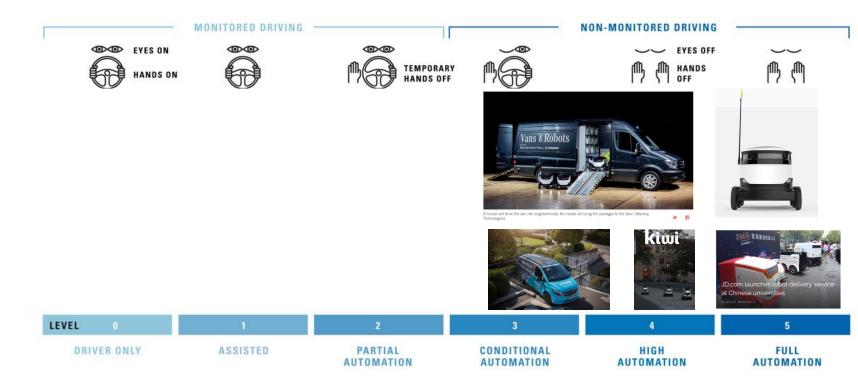
Automating and Electrification in Last Mile Deliveries 2021 3RFM Conference March 4th, 2021


Miguel Jaller

INSTITUTE OF TRANSPORTATION STUDIES

Associate Professor, Department of Civil & Environmental Engineering, Co-Director, Sustainable Freight Research Center mjaller@ucdavis.edu

3 REVOLUTIONS SHARED - AUTOMATED - ELECTRIC

Automation/Electrification in the Last Mile

E-Vans Cargo e-bikes Road Autonomous Delivery Vehicles (ADRs and RADRs) Unmanned Aerial Vehicles (drones)

http://beta.latimes.com/business/autos/la-fi-hy-robovan-mercedes-20160907-snap-story.html

http://www.billbrucecommunications.com/article/jdcom-launches-robot-delivery-service-at-chineseuniversities/

Mode/Initiative	Strengths	Limitations/Drawbacks
-Vans	Light-medium duty could substitute 1:1	Recharging infrastructures
Featro Contraction	No infrastructure requirements	Purchase Cost
	Minimal regulatory barriers	Low fossil fuel prices
	Public acceptability	Space and curb access/use
Comparable performance with traditional ligh	t Zero tail-pipe emissions	Driver
vehicles. Market availability	Range	Congestion
E-Bikes/E-Cargo Bikes	Purchase cost	Driver
	Maneuverability	Cargo capacity
	Use of bike lanes	Range
0-03-0	Parking requirements	Considered automotive (4-wheel)
	No infrastructure requirements	Conflicts/ right-of-way
Notor-assisted bikes help reduce effort	Public acceptability	
Currently used by some couriers	Zero tail-pipe emissions	
Autonomous vans and	Driverless	Load/unload infrastructure
RADRs	Operational cost	Security/theft risk
	No road infrastructure requirements	Labor paradigm
	Safety	Regulations (recent operational approvals)
Possibility of rescinding of drivers lowering	24/7 operations	Conflicts/ right-of-way
costs, improving safety and efficiency	Range	Congestion

UCDAVIS INSTITUTE OF TRANSPORTATION STUDIES

Mode/Initiative	Strengths	Limitations/Drawbacks	
UAVs/Drones	Driverless	Noise	
	Travel time/distance/efficiency	Safety (technical error/sabotage)	
	Serve areas without road access	Risk of harm to humans or assets	
	24/7 operations	Energy efficiency	
	Zero tail-pipe emissions	Local ecology impacts (e.g., birdlife)	
Drones or UAVs can serve difficult access		Near ground air regulations	
areas. Some show time and cost efficiencies.		Destination access	
ADRs	Driverless	Safety (technical error/sabotage)	
	Remote supervision	Risk of harm to humans or assets	
	Noise	Curb space access	
	Parking requirements	Public acceptability	
Major initiatives are still in development and	24/7 operations	Regulations	
testing. Commercial initiatives operate in	Zero tail-pipe emissions	Range	
controlled environments.	Energy efficiency	Human dependency at destination	

Summary of + and – Attributes

	ICE Trucks/Vans	E-Vans/trucks	E-cargo bikes	RADRs	ADRs	Drones
Required parking/landing space		=	+	-	++	-
Required space on the streets/bike line		=	-	=/-	-	++
Additional infrastructure	+++	-	-	+	-	-
Vehicle cost	-		++	-	++	++
Operational cost	+	+++			_	+**
Load Capacity	+++	++				
Versatility in traffic			+		_	+++
Refueling/recharge times	+++	-	+	-	_	
Noise		++	+++	++	++	
Tailpipe emissions		+++	+++	+++	+++	+++
Congestion contribution		=	-	Unknown*		
Human dependency		=	=	@ destination***		

UCDAVIS INSTITUTE OF TRANSPORTATION STUDIES

= Similar to ICEs

 $\ensuremath{^*}$ Can heavily congest the sidewalks, and create congestion at intersections, air

** Battery cycles

*** May require remote supervision, and loading and unloading actions

Miguel Jaller

Associate Professor, Department of Civil & Environmental Engineering Co-Director, Sustainable Freight Research Center Institute of Transportation Studies, University of California, Davis mjaller@ucdavis.edu

